Scientific Computing

This course is offered through Coursera — you can add it to your Accredible profile to organize your learning, find others learning the same thing and to showcase evidence of your learning on your CV with Accredible's export features.


Course Date: 26 August 2014 to 04 November 2014 (10 weeks)

Price: free

Course Summary

Investigate the flexibility and power of project-oriented computational analysis, and enhance communication of information by creating visual representations of scientific data.


Estimated Workload: 10-15 hours/week

Course Instructors

Nathan Kutz

J. Nathan Kutz specializes in a unified approach to applied mathematics including modeling, computation and analysis. His current focus is phenomena in dimensionality reduction and data-analysis techniques for complex systems. This includes work in laser dynamics and modelocking in fiber lasers, neuro-sensory systems and theoretical neuroscience, and gesture recognition algorithms for portable electronic devices. Kutz has authored numerous scientific articles on these subjects as well as segments of books devoted to his area of expertise.

Course Description

Investigate the flexibility and power of project-oriented computational analysis. Practice using this technique to resolve complicated problems in a range of fields including the physical and engineering sciences, finance and economics, medical, social and biological sciences. Enhance communication of information by creating visual representations of scientific data.

This course is a survey of numerical solution techniques for ordinary and partial differential equations. Emphasis will be on the application of numerical schemes to practical problems in the engineering and physical sciences. Apply advanced MATLAB routines and toolboxes to solve problems. Review and practice graphical techniques for information presentation and learn to create visual illustrations of scientific results

Suggested Reading

Kutz, N. (2013). Data-driven modeling scientific computation. New York, NY: Oxford University Press.

Data-Driven Modeling and Scientific Computation is a survey of practical numerical solution techniques for ordinary and partial differential equations as well as algorithms for data manipulation and analysis. Emphasis is on the implementation of numerical schemes to practical problems in the engineering, biological and physical sciences.

An accessible introductory-to-advanced text, this book fully integrates MATLAB and its versatile and high-level programming functionality, while bringing together computational and data skills for both undergraduate and graduate students in scientific computing.

Course Workload

10-15 hours/week

Review course:

Please sign in to review this course.

Similar Courses


{{ course.name }} {{ course.name }}

{{ course.name}}

{{course.start_date | date:'MMM d'}} — {{ course.end_date | date:'MMM d'}}   ({{ course.time_until_course_starts }} ,   length: {{ course.length_in_weeks }} weeks) Self-paced — no deadlines    
${{ course.price }} p/mfree
TO-LEARN
TO-LEARN
ADDED!

REMOVE
FROM
LIST
ON PROFILE

Course Activity & Community

Be the first Accredible user to join this course!





uploaded {{ feed_item.model.caption || feed_item.model.url || feed_item.model.file_file_name }} for the course {{ feed_item.course.name }} — {{ feed_item.time_ago }}

{{ comment.user.name }} {{ comment.text | truncate: (comment.length || comment_display_length) }}   read more hide

{{ comment.time_ago }}

started the course {{ feed_item.course.name }} — {{ feed_item.time_ago }}
followed {{ feed_item.model.name }} — {{ feed_item.time_ago }}
followed thier friend {{ feed_item.model.name }} — {{ feed_item.time_ago }}
{{ feed_item.model.text }} (on the course {{ feed_item.course.name }}) — {{ feed_item.time_ago }}

{{ comment.user.name }} {{ comment.text | truncate: (comment.length || comment_display_length) }}   read more hide

{{ comment.time_ago }}